Mathematical tools

Introduction to mathematical tools used in Digital Image processing

Arithmetic Operations

$$
\begin{aligned}
& v(x, y)=f(x, y) \div g(x, y) \\
& p(x, y)=f(x, y) \times g(x, y) \\
& d(x, y)=f(x, y)-g(x, y) \\
& s(x, y)=f(x, y)+g(x, y)
\end{aligned}
$$

When these operations can be used?
How can we treat the resutlts?

a b c
FIGURE 2.30 (a) Digital dental X-ray image. (b) ROI mask for isolating teeth with fillings (white corresponds to 1 and black corresponds to 0). (c) Product of (a) and (b).

Logical operation

FIGURE 2.33
Illustration of logical operations involving foreground (white) pixels. Black represents binary 0 s and white binary 1 s . The dashed lines are shown for reference only. They are not part of the result.

Intensity

Transformations and Spatial Filtering

The Basics of Intensity Transformations and Spatial Filtering

FIGURE 3.1 A
3×3
neighborhood about a point (x, y) in an image.

$g(x, y)=T[f(x, y)]$
Toperator defined over neighborhood of a point (x, y)

Intensity transformation functions

a b
FIGURE 3.2 Graylevel transformation functions for contrast enhancement.

When the size of neighborhood is $1, T$ becomes intensity transformation function

Some Basic Intensity Transformation Functions

FIGURE 3.3 Some

basic gray-level transformation functions used for image enhancement.

Piecewise-Linear Transformation Functions

Intensity Level Slicing

Bit-Plane Slicing

One 8-bit byte

Bit-plane 7
(most significant)
FIGURE 3.12
Bit-plane
representation of an 8-bit image.

a b c
d e f
g h i
FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

END OF PRESENTATION

